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ORIGINAL ARTICLE

Application of Bayesian networks for hazard ranking of nanomaterials to support
human health risk assessment

Hans J. P. Marvina, Yamine Bouzembraka , Esm�ee M. Janssena, Meike van der Zandea, Finbarr Murphyb ,
Barry Sheehanb, Martin Mullinsb and Hans Bouwmeestera,c

aWageningen University and Research, RIKILT, Wageningen, the Netherlands; bKemmy Business School, University of Limerick, Ireland;
cDivision of Toxicology, Wageningen University, Wageningen, the Netherlands

ABSTRACT
In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and bio-
logical effects with the focus on metal- and metal-oxide nanomaterials to support human health risk
assessment. The developed BN captures the (inter) relationships between the exposure route, the nano-
materials physicochemical properties and the ultimate biological effects in a holistic manner and was
based on international expert consultation and the scientific literature (e.g., in vitro/in vivo data). The BN
was validated with independent data extracted from published studies and the accuracy of the prediction
of the nanomaterials hazard potential was 72% and for the biological effect 71%, respectively. The appli-
cation of the BN is shown with scenario studies for TiO2, SiO2, Ag, CeO2, ZnO nanomaterials. It is demon-
strated that the BN may be used by different stakeholders at several stages in the risk assessment to
predict certain properties of a nanomaterials of which little information is available or to prioritize nano-
materials for further screening.
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Introduction

Nanomaterials are widely used in almost all sectors in our society,
and hence, human and environmental exposure to these materials
is likely. The risk assessment (RA) of nanomaterials (NMs) faces dif-
ficulties as it requires an extensive datasets on physiochemical
parameters, hazard identification and exposure assessment (Stone
et al., 2014a). For this reason, only a few attempts to perform a
RA of NMs are available in the scientific literature (i.e., (nano)silica,
(nano)titanium, CNTs and silver NMs) (Dekkers et al., 2011, 2013;
Heringa et al., 2016; Wijnhoven et al., 2009). Interestingly, US-EPA
published a conditional registration of a nanosilver containing
product (EPA, 2011). The great challenge for the RA of NMs is to
keep pace with the high speed of innovations in research and
development that result in an ever increasing diversity of NMs.
Therefore, a system that identifies those NMs that should get pri-
ority in the RA would be very helpful.

Several approaches have been proposed to classify NMs and to
estimate their risks that include stochastic multicriteria acceptabil-
ity analysis (SMAA-TRI) (Tervonen et al., 2007), weight of evidence
(WOE) (Hristozov et al., 2014; Linkov et al., 2011), grouping (Arts
et al., 2014, 2016), quantitative nanostructure–activity relationship
(QSAR) (Singh & Gupta, 2014; Winkler et al., 2014) and Bayesian
networks (Linkov et al., 2015; Low-Kam et al., 2015; Money et al.,
2014). Combinations of these methods were proposed to integrate
and collate heterogeneous information to estimate the risk of
NMs under scarcity of data (Hristozov et al., 2012; Linkov et al.,
2015).

Bayesian network (BN) has been proposed as a potential tool
in risk assessment of NMs (Keisler & Linkov 2014; Linkov et al.,
2014, 2015; Low-Kam et al., 2015; Money et al., 2014;

Murphy et al., 2016; Winkler et al., 2014), in forecasting environ-
mental risks of NMs (Money et al., 2012) and in characterizing rela-
tionships between physicochemical properties of NMs and their
in vitro toxicity (Low-Kam et al., 2015). The potential use of the BN
approach for nanoparticles risk assessment was detailed in
(Morgan, 2005; Wiesner & Bottero, 2011).

BN is a graphical model that presents probabilistic relation-
ships among a set of variables to represent knowledge, reason-
ing under uncertainty, and drawing conclusions based on
available information (Cheng et al., 2002). BN approaches offer
several features that are useful in hazard ranking of NMs.
Firstly, a BN is based on probabilistic relationships that provides
insight and an understanding even with partial and limited
information (Beaudequin et al., 2015). This is particularly import-
ant in the case of NM hazard ranking were the relationships
between NMs physicochemical properties and their effects on
human health have not been firmly established. Secondly, BN
allows to include expert knowledge and their experience in the
model. This is considerably useful when the data are limited,
but expert knowledge is available. Thirdly, BN facilitates reason-
ing and drawing conclusions by using efficient algorithms, even
when information is missing or the knowledge of an expert is
limited (Lauritzen, 1995). The use of algorithms facilitates the
sensitivity analysis to address the uncertainties that are caused
by the different parameters and to reveal variables that are
major drivers for the outcome (Coup�E et al., 2000). Finally, BN
satisfies the requirement for quantitative approaches that can
be used to generate forecasts and associated levels of uncer-
tainty and can be easily up-dated as new information becomes
available. The uncertainty is explicitly represented in a BN
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model, as each node or variable is represented as a probability
distribution (Wiesner & Bottero, 2011).

BNs have been extensively used in different areas of research
such as in the chemical mode of action classification for aquatic
toxicology (Carriger et al., 2016) and ecological risk assessment
(Lee & Lee, 2006; Pollino et al., 2007); to classify images in medical
image analysis (Arias et al., 2016); to predict food fraud (Marvin
et al., 2016; Bouzembrak & Marvin, 2016); to detect surgical site
infections and safety assessment of natural gas stations (Sohn
et al., 2016; Zarei et al., 2016).

In this paper, we explore the potential of BNs to predict hazard
levels of NMs to support risk assessors in their attempts to priori-
tize NMs for a full human health risk assessment. By means of
expert consultation and literature data, a BN was constructed and
validated with data derived from studies recently published. The
applicability of the BN to forecast the potential hazard level and
potential biological effects of NMs is demonstrated for several
metal and metaloxide NMs.

Materials and methods

In this study, the construction of the BN consists of the following:
(i) expert elicitation, (ii) collection of the data, (iii) BN construction
and, (iv) validation of the constructed BN (Langseth & Portinale,
2007) (Figure 1). Generally, a BN graphical structure is constructed
manually with expert knowledge or semiautomatically from data.
In our study, both approaches were combined. An initial BN
graphical structure was constructed based on an extensive expert
consultation. This initial BN structure was subsequently revised
and optimized using the semiautomatic mode of the Hugin soft-
ware and data of NMs collected from literature.

Expert elicitation

In this step, the relevant variables of the BN (i.e., nodes), their value
range (i.e., states), and the main relationships (e.g., linkages) among
them were defined by means of expert elicitation. Two expert elicit-
ation rounds were executed. In the first round, six experts in the
field of (in vivo, in vitro) nanotoxicology from the Netherlands par-
ticipated. An online questionnaire was used for the survey and
included 15 questions. In this questionnaire, national experts
selected the most important NM variables, including exposure
routes, potential biological effects and physicochemical properties
that can affect human health. Based on the feedback received, a
second expert elicitation round was conducted using an online
questionnaire. The experts were selected from ongoing EU
Framework 7 projects and are all highly experienced in the area of
risk assessment of NMs. In total, 29 experts were invited to partici-
pate. The questionnaire of this second round contained 36 ques-
tions. The purpose of this questionnaire was to confirm/validate
the answers from the first round and to establish the interactions
between nodes and to determine their states. The full list of ques-
tions can be seen in Supplement 1 (Questionnaire).

Literature data collection

Toxicity data of metal and metaloxide NMs were collected from
studies reported in the scientific literature in the period of

2009–2015. It was ensured that data was available for all nodes
identified in the expert elicitation. In total, 32 scientific articles
were used (Supplement 1 Table A1).

A Microsoft Excel dataset related to the developed BN was cre-
ated, where each node in the model is related to one column in
the file and each row in the database represents one case. In one
row, data on a specific NM (e.g., reported physicochemical proper-
ties) and the results reported of this material in an in vitro or
in vivo experiment (e.g., biological effect) were collected and
referred to as a case. Each row contained the results of one NM
with unique properties and only one experiment. For example, if
the same experiment was performed for two slightly different
NMs (e.g., only particle size differs), two rows were constructed.
Hence, many cases could be extracted from one article.

The database created consists of 20 columns (i.e., nodes) and
559 rows (i.e., cases). It contains eight nodes indicating biological
effects, namely neurological effects, cardio-pulmonary effects,
immunological effects, inflammation, genotoxicity, reaches central
nervous system, fibrosis and cytotoxicity (Table 1). Since outcomes
of a toxicity study are generally more specific than these generic
biological effects nodes, a grouping was conducted based on lit-
erature and expert knowledge (Table 1).

The selected 32 articles were assessed for the presence of
tested endpoints related to the biological effects described in the
BN (Table 1). To determine the state of the biological effect
node (none/low/medium/high), classification criteria presented in
Table 2 were used.

To be classified as having a biological effect, the result related
to the tested endpoint had to be significantly different from the
control (as reported by the article). If the tested endpoint showed
no significant difference compared to the control, the value of the
related effect was recorded as “None.” If the tested endpoints
were significantly different from the control, the related effects
were classified as low/medium/high. This scale reports the prob-
ability of the NM exerting this effect (strength of the evidence)
and not the severity of the effect. When there was a significant
difference in the tested endpoint, although not dose-related, the
related effect was classified as “Low”. For the effect to be classi-
fied as “Medium” or “High”, the results of the tested endpoint
should show a dose–response relation and be positive for more
than one/few of the tests indicating this effect or in at least sev-
eral animals (when the results of an in vivo study are presented
per animal) (Table 2). For the in vitro cytotoxicity effects, the
medium and high classification was based on the decrease in cell
viability and the presence of an LD50, which indicates a dose–res-
ponse effect. To be classified as “Medium,”<75% decrease in cell
viability must have been determined. To be classified as “High,”
75–100% decrease in cell viability must have been determined.

In addition to the eight biological effects nodes, an overall
effect node was created (i.e., NM hazard). This node depicts the
potential of a NM to exert a biological effect and is determined
based on the following expression:

HRi ¼
X8

k¼1

BEik (1)

where HRi is NM hazard score of case i and BEik is the biological
effect level score of case i and biological effect k. For example,

Data collec�on BN valida�onBN construc�onelicita�on
Expert

Figure 1. The method steps.
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BEik ¼ 0 when the biological effect is equal to none or missing
data. The HRi score was classified using the same score table
(Table 2) of the biological effects, except for the “High” classifica-
tion effect. NM hazard node was defined as “High” when HRi � 3.

BN construction

A BN is a graphical model that represents probabilistic relation-
ship among a set of nodes. A BN is a directed acyclic graph,
where the nodes represent the variables U¼ { Ai, … , An } and the
directed links between them indicate the relationship among
the nodes. Each node is composed of a set of states. A node Ai is
the parent of the child node Aj, if there is a link from Ai to Aj. BN
specifies a unique joint probability distribution of all nodes
P(U)¼ P(A1, … , An), given by the product of all conditional prob-
ability tables specified in BN:

P Uð Þ ¼
Yn

i¼1

PðAijpaðAiÞÞ (2)

where pa(Ai) are parents of node Ai and P(Aijpa(Ai)) specifies a
conditional probability distribution. The calculations are based on
Bayesian theory, where the probability of event A at the condition
of event B is expressed as:

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ (3)

In which PðAÞ is the prior probability of A, PðBjAÞ is the prob-
ability of B under the condition of a known event A and PðBÞ is

prior probability of B. An example of BN with six nodes is shown
in Figure 2. The corresponding decomposition of joint distribution
of nodes is given by

P A1; . . . ;A6ð Þ ¼ P A1ð ÞP A2ð ÞP A3ð ÞPðA4jA1;A2ÞPðA5jA2;A3ÞPðA6jA4;A5Þ

To calculate the joint distribution, unconditional
distributions of P A1ð Þ; P A2ð Þ; P A3ð Þ and conditional distributions of
P A4jA1;A2ð Þ; P A5jA2;A3ð Þ; PðA6jA4;A5Þ should be specified.

In this case, an initial BN structure was generated from the
information that was collected through the expert elicitation.
Subsequently, the BN was optimized using literature data for each
node and the learning algorithm of the Hugin 8.3 software (http://
www.hugin.com/) (Aalborg, Denmark). Generally, when sufficient
data are available, machine learning techniques can be used to
estimate the conditional probability tables (CPTs) of a BN and to
define the optimal configuration of the interactions between
nodes (Alameddine et al., 2011; Denœux 2010, 2011). In this study,
the expectation–maximization (EM) learning algorithm was used
to build the BN and to estimate the probabilities within each CPT
of the BN (Heckerman, 2008; Marcot et al., 2006; Nyberg et al.,
2006). In total, 468 different cases were collected from the papers
and used for the learning process (learning data are available in
Supplement 2).

Validation of the BN

The validation of the BN was conducted with an out-of-sample
test against 91 cases extracted from the selected set of scientific

Table 1. Grouping of endpoints for the determination of the different biological effects.

Biological effects Possible endpoints for the determination of the biological effect

Neurological effects Neuropathology; motor activity; motor and sensory function; learning and memory; neurotransmitters; (OECD, 2007)
Reaches central nervous system “Is found in the brain” as element (Morgan, 2005)
Cardiopulmonary effects Lung or heart inflammation (inflammatory cell infiltration); lung hyper responsiveness; heart rate (variability); blood pressure;

alterations in red blood cells; Broncho alveolar lavage fluid analysis (cytokines, LDH and protein) (Chuang et al., 2014;
Gordon et al., 1998)

Immunological effects Immunosuppression; increased propensity for allergic disease, including atopy, food allergies and asthma; hypersensitivity
reactions directed at the chemical itself; Increased risk of autoimmune disease; dysfunctional responses of innate immune
cells producing tissue or organ damage or dysfunction (WHO, 2012)

Inflammation Systemic inflammation (white blood cells, lymphocytes and granulocytes); tissue inflammation; inflammatory cell infiltration;
cytokines level (Chuang et al., 2014)

Fibrosis Histopathological fibrosis analysis
Liver: periportal fibrosis (incomplete septa); bridging fibrosis with lobular distortion; cirrhosis (Hiramatsu et al., 2006)
Lung: thickening of alveolar or bronchiolar vessels; damage to lung structure; formation of fibrous bands or fibrous
masses (Ashcroft et al., 1988)

Cytotoxicity Cytotoxicity; necrosis; cell viability; apoptosis
Genotoxicity Single-strand and double-strand breaks, mutations, deletions, chromosomal aberrations, impairment in DNA repair and cell-

cycle (Ng et al., 2010)

Table 2. Criteria for the classification of the biological effects.

Classification effect Criteria
Effect level
Score (BEik)

None Endpoint(s) that fall under
the defined effects were
tested

No significant difference in tested endpoint compared to control 0

Low Endpoint(s) that fall under
the defined effects were
tested

Significant difference in tested
endpoint compared to control

Positive for one/few of the tests indicating this
effect or in few animals

1

Medium Endpoint(s) that fall under
the defined effects were
tested

Significant difference in tested
endpoint compared to control

Dose-response
relationship

Positive for several of the tests indicating
this effect or in several animals

2

<75% decrease in cell viability
High Endpoint(s) that fall under

the defined effects were
tested

Significant difference in tested
endpoint compared to control

Dose-response
relationship

Positive for most of the tests indicating this
effect or in most animals

3

>75% decrease in cell viability
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papers as described earlier. These cases were not used for
the development of the BN (validation data are available in
Supplement 2).

The validation was performed for each case, where the bio-
logical effect or the NM hazard level was forecasted using the
reported NM physicochemical parameters (e.g., shape, nanopar-
ticle, dissolution, surface area, surface charge, surface coatings,
surface reactivity, aggregation, particle size) of the cases as input
values. Note that, as expected, missing data existed within the
out-of-sample dataset used for validation. We assumed that the
prediction made by the BN based on these input values was cor-
rect when the biological effect or NM hazard level (with the high-
est probability) given by the BN matched the level depicted in the
validation case (see section Sensitivity analysis).

Sensitivity analysis

The aim of this sensitivity analysis is to measure the effect of the
NM physiochemical properties into NM hazard node and the dif-
ferent biological effect nodes (e.g., genotoxicity, cytotoxicity,
neurological effects, etc.). In the literature, the entropy function
has been used to analyze the sensitivity of BN models (Cover &
Thomas, 2006; Kjærulff & Madsen, 2013). It consists of calculating
the function H(X) of a node X:

H Xð Þ ¼ �
X

X

P Xð Þ log PðXÞ (4)

Where P(X) is the probability distribution of X.

Results

Expert elicitation

By means of two rounds of expert consultation, it was determined
(i) which node is relevant, (ii) the value range (e.g., states) of the
node, (iii) the relationships between the nodes. The first round
(with 6 experts from the Netherlands) was used to shape the
questionnaire of the second international round. In total, 29 inter-
national experts were invited to participate in the second round
and 15 completed questionnaires were returned (i.e., 52%). The
selection of the most relevant physicochemical properties was
based on the results of the two online questionnaires.

As an example we show the results for nanomaterial proper-
ties. In the first questionnaire, national experts validate the most
important NM variables that can influence the human hazard
potential, the exposure routes and the potential toxic effects. In
addition, the interactions between the model variables were

determined. The national experts consulted in the first round gen-
erally agreed on the NM characteristics (i.e., BN variable) that are
relevant for human health and the ones that should be excluded.
Based upon this expert elicitation, we included: degree of aggre-
gation (N¼5), surface reactivity (N¼ 5), solubility (N¼ 5) and par-
ticle size distribution (N¼ 5) (Figure 3). Based on these results, the
international questionnaire was updated and no questions were
included about the NM degradation rates, and NM sediments
rates. The results of the international survey are shown in
Figure 4. It can be seen that a total of eight NM characteristics
were identified by six or more international experts as influencing
human health. These are shape, solubility, surface area, surface
charge, surface coatings, surface reactivity, particle size distribu-
tion and degree of aggregation. Only one expert mentioned pur-
ity of NM. No expert used the “other option” to include NM
characteristics not mentioned in the survey.

Only those physicochemical properties that were nominated by
seven or more experts (N� 7) in the second round were used for
the BN model. These were: dissolution (N¼ 11), shape (N¼11),
surface reactivity (N¼ 10), surface area (N¼ 9), particle size (N¼ 8),
surface charge (N¼ 7), surface coatings (N¼ 7) and degree of
aggregation (N¼ 7).

Similar approach as used for NM properties was applied for
both biological effects and exposure routes. For the biological
effects indicated as important by the experts in the second round,
we used the properties that were mentioned by 4 or more experts
and these are immunological effects (N¼ 11), inflammation (N¼ 9),
cardiopulmonary effects (N¼ 9), genotoxicity (N¼ 8), cytotoxicity
(N¼ 8), fibrosis (N¼ 7), cell transformation (N¼ 4) and neurological
effects (N¼ 4) (See Supplement 2). For cell transformation, no lit-
erature data could be retrieved and therefor is not included in the
final BN model as a node.

Each node in the BN model contains states which can repre-
sent values or intervals for physical quantities, linguistic terms,
etc. The different states of the proposed nodes in round 1 were

Figure 2. A typical Bayesian network showing the probabilistic relationship
between a set of nodes.

Figure 3. NM characteristics mentioned by national experts.

Figure 4. NM characteristics mentioned by international experts.
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validated by international experts in the second survey. As an
example, we show in Figure 5 the result for the dissolution node.
Three options for the discretization were presented and it is clear
that the majority of the experts prefer the third option being
(0 to 25%; 25% to 50%; 50% to 75%;>75%). In addition, the
experts could propose an alternative discretization, but none used
this option. The full questionnaire results can be seen in
Supplement 2.

Development of the BN and validation

The BN that was developed from expert elicitation and machine
learning is shown in Figure 6 and includes the probabilities of the
states of each node. The node NM hazard, depicting the strength
of evidence for a hazard potential, gives the following probabil-
ities for the states: “None” (41.67%), “Medium” (18.16%), “Low”
(10.90%) and “High” (29.27%).

The most commonly used NMs in the studies included in the
model are as follows: TiO2 (26.07%), SiO2 (13.03%), Ag (11.54%),
ZnO (10.47%) and CeO2 (5.98%). Other (metal) NMs appear (Co3O4,
Cr2O3, CuO, Ni2O3, Fe3O4, ZrO2, etc.) less frequently (all 2% or less).
The NM properties contributing most to the hazard potential of
these NM are in decreasing order: nanoparticle, surface coating, sur-
face area, aggregation and particle size (data not shown).

To validate the developed BN, 91 cases were randomly
selected from the initial dataset. These were not used for the BN
construction. As illustration, we present the first 20 cases in
Table 3, showing the input parameters of the cases being; study
type, NM physicochemical properties and administration route.
The NM hazard level that was derived for that specific case from
the biological effect data is also shown. The latter was not used
as input for the validation but represents the property of the case
to be predicted by the BN.

Based only on the given physiochemical properties, study type
and administration route, the probability of the states (none/low/
medium/high) of NM hazard, were calculated by the BN (Table 3).
The state with the highest probability was then compared to the
actual state as derived from literature (Table 3, column NM
hazard).

For example, the input parameters of the first validation case
(Table 3, N¼ 1) are: study is an “In vivo” study, nanoparticle is

“Ag,” the shape is “Sphere,” particle size is “10 to 50,” exposure
route is “Inhalation” and all other parameters are unknown such
as dissolution, surface area, surface charge, surface reactivity and
aggregation (i.e., missing information of this particular case).
Based on these input parameters, the BN gave the highest prob-
ability for the NM hazard state “High,” which is similar to the state
derived from the literature. Comparison of the last two columns in
Table 3 shows that the level of NM hazard is predicted correctly
in 17 out of the 20 cases. Considering all 91 cases, 72% were pre-
dicted correctly (not shown). It should be noted that even though
information of many nodes of a case is missing, the BN still can,
in most instances, predict NM hazard level correctly.

Similar results were also found for the prediction of the bio-
logical effect. Table 4 shows these results for the 20 cases pre-
sented in Table 3. As can be seen in Table 4, the BN predicted the
biological effect and its level correctly for 15 out of the 20 cases.
When all 92 cases are considered, 71% were predicted correctly
(data not shown).

Sensitivity analysis

The sensitivity of our BN was assessed using the described
entropy function (Equation 4). The result of the effect (i.e.,
entropy) of NM physiochemical properties on the NM hazard
node and biological effects are presented in Table 5. Nanoparticle
(0.39) surface coatings (0.22) and surface area (0.15) are identified
as having more influence on the NM hazard node than the other
properties. The same properties are also the most important for
the biological effects and the highest values are observed for
cytotoxicity and inflammation (Table 5).

Demonstration of the application of the BN; comparison
between several NMs

To show potential applicability of the BN, we compared the haz-
ard potential of 5 NMs (i.e., TiO2, SiO2, Ag, CeO2, ZnO) based on
the node “nanoparticle” only. The results are presented
in Figure 7. As can be seen in NM hazard category “High”, ZnO
has the highest hazard potential (e.g., 82%) and TiO2 the lowest
(e.g., 15%).

Figure 5. Distribution of answers to the question related to the states of node “Dissolution distribution”.
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The BN also allows the assessment of the effect of the various
NM properties contributing to the observed biological effect or
potential hazard level. As an illustration, we show the relationships
between the surface charge of the NMs and their predicted haz-
ard potential. To this end, ‘high’ level was selected in the NM haz-
ard node and the probabilities in the NM surface charge node
were recorded. The results are shown in Figure 8. It appears that
for all NMs (except for SiO2), the highest probabilities are
observed for surface charges above 0, suggesting that for these
NMs, the positive charged surface contributes to their hazard
potential.

The impact (entropy) of physicochemical property nodes and
biological effect nodes on the hazard nodes was calculated for
five NMs (i.e., TiO2, SiO2, Ag, CeO2, ZnO) using the constructed BN

(Table 6). The results show that the NMs differ regarding the most
important physicochemical properties but less variation was
observed for the biological effect. For all 5 NMs, cytotoxicity has
the highest entropy indicating that for these NMs this is the most
important biological effect determining its hazard. As shown in
Table 6 for the NM Ag, the surface coatings (0.53), the surface
charge (0.37) and the surface area (0.28) are the main physio-
chemical properties having the highest effect on the NM Hazard
node in the model. The most influential biological effects in NM
hazard node for Ag are cytotoxicity (0.85), inflammation (0.53) and
CNS effects (0.49). For TiO2, we found that particle size (0.28),
shape (0.26) and the surface coatings (0.26) are the most import-
ant physiochemical properties having a high impact on the NM
hazard node (Table 6).

Figure 6. The BN structure containing state probabilities of each node, where the green ellipses are physicochemical properties of NM, orange ellipses are biological
effects, yellow ellipses are additional nodes for administration routes and study type and finally ellipse is the NM hazard node. CNS: (Reaches) central nervous system.

Table 3. Validation results of the BN; input values (20 cases).

Input parameters NM hazard

N
Study
type Shape Nanoparticle Dissolution

Surface
area

Surface
charge

Surface
coatings

Surface
reactivity Aggregation

Particle
size

Administration
route Observed Predicted

1 In vivo Sphere Ag – – – – – – 10– 50 Inhalation High High
2 In vitro Amorph Al2O3 0–25% – – – – – 10–50 – None None
3 In vivo Sphere Au – 0–15 �25–0 SO3– – – 10–50 Inhalation None None
4 In vitro Elongated C – 189–2025 – – – – >100 – Medium Low
5 In vitro Elongated Cellulose – – – Sulfate – Low >100 – Low Low
6 In vivo Irregular CeO2 – 15–51 – – – Medium 10–50 Inhalation High High
7 In vitro Amorph Co3O4 0–25% – – – High – 10–50 – High High
8 In vitro Sphere CoO 0–25% – – – High – 50–100 – High High
9 In vitro Sphere Cr2O3 0–25% – – – Low – >100 – Medium Medium
10 In vitro Sphere CuO 0–25% – – – High – 10–50 – High High
11 In vivo Sphere Fe2O3 – 0–25 – – Medium 50–100 Oral None None
12 In vitro Sphere Fe3O4 0–25% – – – – – 10–50 – None None
13 In vitro Sphere Ni2O3 0–25% – – – High – >100 – Medium Medium
14 In vitro Sphere NiO 0–25% – – – – – 10–50 – None None
15 In vivo Sphere PS – 25–50 Amine – – 50–100 Oral None Low
16 In vitro Amorph Sb2O3 0–25% – – – – 10–50 – None None
17 In vitro Irregular SiO2 – 189–2025 �50 to �25 Carbon Low High 10–50 – Low High
18 In vivo Irregular TiO2 – 15–51 – – – High >100 Oral Medium Medium
19 In vitro Sphere WO3 0–25% – – – – 10–50 – None None
20 In vitro Elongated ZnO – 0–15 0 to 25 None – Medium >100 – High High
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Discussion

In this work, we have uniquely developed a BN for NM human
hazard ranking that was constructed by expert consultation and
an additional literature survey. The potential of BNs have been
shown in various studies (Hristozov et al., 2012; Linkov et al.,
2015; Low-Kam et al., 2015; Money et al., 2014) and is often
related to the strength of BNs in data scarce environments. The
validation of the BN as developed here showed a high accuracy
of the predictions of the model, and interestingly, it could
“correctly” rank NMs with minimal input data (i.e., only elementary
composition).

This BN can be used by different stakeholders. Firstly, our
model can be applied in RA (at the industrial health, safety and
environment management and regulatory level) to prioritize NMs
for further testing. The minimal data needs of our BN can be of
particular interest for small and medium-sized enterprises (SME),
with limited resources for toxicological testing of NM. Secondly,
BNs like this can be used to for simulation purposes to predict
biological effects of (new) NMs and hence, support industrial safe-
by-design approaches. Lastly, it can provide estimates of physico-
chemical properties of a given NM in the BN on which no data
has been provided, which is relevant for fundamental studies, the
production of inherently safer materials. This may help designers
of NMs to direct future developments.

Table 4. BN results; biological effects prediction.

Cytotoxicity Pulmonary effects Fibrosis RCNS effects Genotoxicity Inflammation

N Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted

1 – – High High – – – – – – Medium Medium
2 None Low – – – – – – – – – –
3 – – – – – – None None – – – –
4 – – – – – – – – Medium None – –
5 Low Low – – – – – – – – – –
6 – – High Medium – – – – – – High Medium
7 High High – – – – – – – – – –
8 High High – – – – – – – – – –
9 Medium Medium – – – – – – – – – –
10 High High – – – – – – – – – –
11 – – None None None None None None – – None None
12 None None – – – – – – – – – –
13 Medium Medium – – – – – – – – – –
14 None None – – – – – – – – – –
15 – – – – – – None Low – – – –
16 None None – – – – – – – – – –
17 Low High – – – – – – – – – –
18 Medium Medium – – – – – – – – – –
19 None None – – – – – – – – – –
20 High High – – – – – – – – – –

Table 5. Sensitivity analysis showing the effect (entropy) of NM physiochemical properties on the NM hazard node and the nodes of biological effects.

Biological effects

Physiochemical properties NM Hazard Inflammation Cytotoxicity Pulmonary effects Neurological effects CNS effects Fibrosis Genotoxicity

Nanoparticle 0.39 0.24 0.37 0.13 0.07 0.14 0.06 0.09
Surface coatings 0.22 0.15 0.25 0.14 0.05 0.09 0.02 0.03
Surface area 0.15 0.06 0.16 0.04 0.08 0.08 0 0.2
Aggregation 0.09 0.1 0.12 0.05 0.02 0.03 0 0
Particle size 0.08 0.03 0.09 0.02 0.03 0.05 0 0.01
Surface charge 0.07 0.05 0.06 0.03 0 0.01 0 0
Shape 0.06 0.04 0.07 0.03 0.01 0.02 0.01 0.02
Surface reactivity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dissolution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 7. The probability (%) of the hazard potential of NMs as predicted by
the BN.
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Figure 8. Effect of surface charge on the prediction of the high category level of
hazard potential of NMs TiO2, SiO2, Ag, CeO2, ZnO. The figures give the probabil-
ities in percentages.
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NM properties driving biological effects have been discussed
for a long time (OECD, 2014). Expert consultation prioritized the
NM dissolution, shape, reactive surface groups, surface area and
size distribution as the most important key descriptors, as
observed earlier (Bouwmeester et al., 2011; Izak-Nau et al., 2015).
The outcome of our BN model is in line with these findings and
showed that the following properties, in decreasing order of
importance, were found to be the most important descriptors of
the potential hazard of NMs: elemental composition, surface coat-
ing, surface area, aggregation and particle size.

It is clear that prioritization of the most relevant variables is
complex since each descriptor is inherently linked to other
descriptors and together they determine the final reactive proper-
ties of a NM. For instance, the size determines the (relative) sur-
face area, combined with the chemical composition it affects the
dissolution potential of a NM. Also, the redox status is heavily
influenced by the chemical composition. The type of chemical
groups that can be introduced to the NM surface is to some
extent dependent on the chemical composition of the core NM,
and largely affects both the intrinsic and extrinsic NM properties.
For instance, capping agents and surface groups affect the dissol-
ution potential and charge, which subsequently affects the aggre-
gation potential (Nel et al., 2013). Indeed, many NM descriptors
are correlated, but most of them can be individually manipulated
at the NM design stage. It is because of this that, several frame-
works for decision making concerning risk assessment of NMs
include the intrinsic and extrinsic descriptors a tiered assessment
approach (Arts et al., 2014, 2016).

High dissolution properties, and therefore high ionic
concentrations, are known to generally lead to high toxicity
(Nel et al., 2013). For this reason, dissolution properties are
included in early stages of tiered risk assessment approaches (Arts
et al., 2014, 2016). Our BN model correctly identified a ZnO and
Ag NM that are known to readily shed ions as having a high haz-
ard risk. However, in our BN model, dissolution does not contrib-
ute to the biological effect. This might be due to the dissolution
states used in this study, which were proposed by the experts in
the expert elicitation (i.e., 1–25%, 25–50%, 50–75%,>75%). All
data collected falls into the first category (i.e., dissolution 1–25%;
Figure 4). Furthermore, in the studies form literature that were
analyzed in our study, only in 50% of the cases data on solubility
was provided (Supplement 2), which may be caused by the cur-
rent challenges to determine solubility of a NM in biological matri-
ces (Tantra et al., 2016). It is evident that more states in the lower
dissolution ranges combined with more data (i.e., more cases) will
result in a higher contribution of dissolution node to the hazard
noted of this BN.

In various steps of the BN development, expert judgment was
included. Firstly, the collection of data from scientific papers that
feeds the BN. For this, we developed a transparent and consistent

procedure as described in the material and method section, which
includes (i) selection of appropriate papers, (ii) classifying the bio-
logical effects (toxicological end points) according to the pre-
sented criteria (Tables 1 & 2). No systematic procedure was
followed to select the papers except that we aimed to obtain
data for all nodes in the model and that the papers used in this
study were considered of being of high quality (expert judgment).
The flexibility of BN makes it easy to add new data (e.g., cases) as
they appear in the future. To be able to classify the biological
effects effectively, a toxicological background of the expert is
necessary. In our study, in several stages of the data extraction
and classification process, the correctness of the classification was
evaluated to ensure a proper classification.

The second part that included expert judgment was the devel-
opment of the BN. Two rounds of expert elicitation have been used
to shape the current BN, including the nodes and states. With
advancing knowledge, additional nodes might be added to the BN,
which is facilitated by the intrinsic principle of a BN (Sessa &
D'Urso, 2014). To enable a scoring on the hazard potential, the
results in the effect nodes are combined into the NM hazard node.
In the current model, the different effects are treated equally, no
weighing or prioritization of the effect nodes has been used, nor
have we incorporated a consideration of the relevance of the end-
points in relation to human disease endpoints. Certainly, this is a
point for improvement and can be determined by expert elicit-
ation. The current study aimed to show the potential of this
approach and the authors are aware that further improvements are
possible especially because of the flexibility that BN offers.

The strength of a BN, as applied in this study, lies in the fact
that all these relationships are taken into account and are used to
estimate the hazard potential or biological effects. However, the
predictive power of the model will be influenced by the amount
and quality of the data from which it is parameterized (Banko &
Brill, 2001). The current model is built on 468 cases. Literature was
selectively searched to deliver data for all nodes. However, it
appeared impossible to retrieve similar data quantity for all nodes,
especially for the biological effect nodes, as have been observed
before (Stone et al., 2014b). The nodes with the highest amount
of data were elemental composition, shape and particle size and
the lowest were immunological effects, genotoxicity and fibrosis.
The ability to deal with missing data is the strength of BN and
improvement of the model (e.g., new relationships) and perform-
ance may be realized with more and complementary data
(Friedman & Yakhini, 1996). The applicability and validity of the
constructed BN model was shown with the prediction of the haz-
ard potential in new cases, which was 72%.

The BN may be used for scenario studies by manufacturers to
apply safe-by-design approaches (i.e., investigate the effect of
changing shape, or size on the potential biological effects) or may
be used in human health risk assessment to predict certain

Table 6. The main NM physiochemical properties and the biological effects of 5 NMs (i.e., TiO2, SiO2, Ag, CeO2, ZnO) affecting NM hazard node.

Nanoparticles

TiO2 SiO2 Ag CeO2 ZnO

Physiochemical
properties

� Particle size (0.28)
� Shape (0.26)
� Surface coatings (0.26)
� Surface area (0.22)

� Shape (0.25)
� Surface coatings

(0.17)
� Particle size (0.07)

� Surface coatings
(0.53)

� Surface charge
(0.37)

� Surface area (0.28)
� Aggregation (0.22)

� Aggregation (0.42)
� Surface coatings

(0.39)
� Shape (0.34)
� Surface area (0.26)

� Surface reactivity
(0.16)

� Particle size (0.05)
� Surface area (0.02)

Biological effects � Cytotoxicity (1.03)
� CNS effects (0.6)
� Inflammation (0.44)

� Cytotoxicity (1.24)
� Inflammation (0.57)
� CNS effects (0.57)

� Cytotoxicity (0.85)
� Inflammation (0.53)
� CNS effects (0.49)

� Cytotoxicity (0.94)
� Inflammation (0.48)
� Pulmonary effects

(0.46)

� Cytotoxicity (0.6)
� CNS effects (0.17)
� Pulmonary effects

(0.17)
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properties of a NM of which little information is available or to
prioritize NMs for further screening. For example, when comparing
the predicted hazard potential of five NMs, ZnO was shown to
have the highest probability for a high hazard potential, whereas
TiO2 had the lowest. Most likely these can be attributed to the dif-
ference is dissolution potential of these NMs. ZnO NM are known
to dissolve under realistic biological conditions (Kim et al., 2014).
In the second example, increasing surface charge was also shown
to contribute to the hazard potential of these NMs, which
increased with increasing positive charge. It is generally accepted
that zeta potential of NMs plays an important factor in toxicoki-
netics and bioavailability where positively charged NMs passage
cellular barriers more quickly, but the link to toxicity is not always
apparent.

BN allows combination of material and bio-physical interaction
properties in a quantitative manner and can be applied as a
stand-alone concept. The unique feature of BN to fill data gaps of
NMs of which little data is available (e.g., read across) can also be
utilized to strengthen other approaches such as the grouping con-
cept (Arts et al., 2015; Oomen et al., 2015). Therefore, the main
role BN can have in risk assessment is to rapidly identify those
NMs that have the highest human hazard risk ranks and focus
these NMs. Thus, it contributes the RA of NMs to keep pace with
the high speed of innovation in research and development. The
BN presented in this study was designed to rank NMs based on
their hazard potential and may be improved in several ways.
Firstly, adding more cases from the literature, including other
types of NMs such as organic NMs, will increase its performance
and applicability. Especially, nodes that have little data input
(such as dissolution, immunological effects, genotoxicity and fibro-
sis) should be enriched. Secondly, the present model does not
include a weighting between the various biological effects that
contribute/are linked to the final hazard level. All effects are taken
as equal and no synergistic contributions are considered. Expert
consultation on this issue may improve this point. Thirdly, a qual-
ity assessment of the data (literature) included in the model may
help to discriminate between the contributions of the various
studies. A similar quality assessment approach may be followed as
developed for the Nanomaterial Registry database (https://www.
nanomaterialregistry.org), which contains nanomaterial informa-
tion from publicly available nanomaterial resources. The quality of
the data inserted into the database is evaluated in the three fol-
lowing categories: (i) physicochemical characteristics of a NM, (ii)
biological interactions of a nanomaterial, (iii) environmental inter-
actions of a nanomaterial (Ostraat et al., 2013).

In the future, the model may be extended with exposure data
enabling prediction of the health risks of NMs. The model per-
formance can be improved by incorporating new data from other
NMs databases. For example, the EU database working group
(WG) of the EU Nanosafety Cluster aims to achieve data interoper-
ability and a common language (one or more ontologies) for
European databases for project results and data. Similarly, in the
United States, the Nanomaterial Registry of the National Institutes
of Health (NIH) is a digital nanotechnology data and information
infrastructure designed to support data sharing, and collaboration.
Such additions may be possible since the nodes of the BN are
similar to the ontology used in the referred databases.

Conclusions

In this study, a BN was developed to predict biological effects and
hazard potential of metal and metaloxide NMs in human using
expert knowledge and available NMs data in literature. The BN
consisted of physicochemical characteristics of NMs (eight

different nodes), biological effects (eight different nodes) and
exposure routes. The constructed BN showed high prediction per-
formance for the hazard potential as well as for the biological
effect and hence is suitable to rank NMs for these properties.
Furthermore, it also allows a detailed evaluation of the contribu-
tion of the various NM properties to the observed effect.
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