Water use and reuse for agriculture – food safety challenges

Filipa Silva, Frédéric Gaspar, Vanessa Pereira, and Maria Teresa Crespo

Food Safety & Microbiology Laboratory Food & Health Division

iBET – Instituto de Biologia Experimental e Tecnológica

www.ibet.pt

Water consumption worldwide

- In industrialized nations, however, industries consume more than half of the water available for human use.
- Freshwater withdrawals have tripled over the last 50 years.

Water consumption in 50 years

Need for more water

- Changes in lifestyles and eating habits are requiring more water consumption per capita;
- The production of biofuels has also increased sharply in recent years, with significant impact on water demand;
- Almost 80% of diseases in low income countries are associated with water, causing some three million early deaths.

Use of reclaimed wastewater

- Reclaimed water-treated wastewater
- The use of reclaimed water in agriculture is driven by:
 - water scarcity situations,
 - its nutrient value,
 - it is seen as a viable economic strategy, and
 - an environmental sustainable practice.

Sewage

Wastewater treatment plants

Use of reclaimed wastewater

- Barriers to the use of treated wastewater for irrigation:
 - Social acceptance.
- Scientific issues approached:
 - Chemical aspects:
 - Presence of antibiotics.
 - Microbiological:

The legislation only focuses on the analysis of faecal coliforms and

intestinal parasite eggs,

- And:
 - Antibiotic resistance bacteria
 - Antibiotic resistance genes
 - Pathogenic viruses

Use of reclaimed wastewater

- Barriers to the use of treated wastewater for irrigation:
 - Social acceptance.
- Scientific issues approached:
 - Chemical aspects:
 - Presence of antibiotics.
 - Microbiological

• The legislation only focuses on the analysis of faecal coliforms and

intestinal parasite eggs,

- And:
 - Antibiotic resistance bacteria
 - Antibiotic resistance genes
 - Pathogenic viruses

Presence of antibiotics

- Antibiotics commonly present in wastewater:
 - Tetracycline, sulphonamides, quinolones and macrolides.
- Attention should also be paid to:
 - Trimethoprim, cephalosporins, carbapenems and vancomycin.

How? By LC-Mass spectrometry

Use of reclaimed wastewater

- Barriers to the use of treated wastewater for irrigation:
 - Social acceptance.
- Scientific issues approached:
 - Chemical aspects:
 - Presence of antibiotics.
 - Microbiological:

The legislation only focuses on the analysis of faecal coliforms and

intestinal parasite eggs,

- And:
 - Antibiotic resistance bacteria
 - Antibiotic resistance genes
 - Pathogenic viruses

Bacteria transmission

AR bacteria transmission

The antibiotic resistant bacteria

What?

- AB resistant bacteria, such as extended spectrum β-lactamase (ESBL)producing Enterobacteriaceae, Aeromonas, Pseudomonas, Enterococci, Escherichia coli and Salmonella are frequently found in wastewater.
 - These genera have strains known for their pathogenic potential, aggressive diseases outcomes and have been described as resistant to disinfection processes.
- Some have even been detected in higher numbers in sewage effluent when compared to sewage influent.

WWTP are hotspots for AB resistance proliferation and dissemination

- How?
 - qPCR and NGS.

The genes

- Extracellular genomic DNA eDNA:
 - DNA survival from microbial and spontaneous chemical degradation is due to binding to:
 - Biofilms,
 - Clay minerals,
 - Larger organic molecules,
 - Other charged particles:
 - which shield the adsorbed DNA from nuclease activity
 - Binding of nucleases also inhibits their ability to hydrolyse extracellular eDNA.
 - Humic acids, of which some are resistant to decay, also bind DNA molecules due to a negative surface charge.

Genes transmission

- The eDNA can be released from the cells in which case it may bind to inorganic particles.
 - Protect the DNA from microbial and spontaneous chemical degradation
- Extracellular DNA may also be incorporated into the genomes of bacteria by:
 - Transformation
 - Transduction
 - Conjugation

Gene detection

- What?
 - Antibiotic resistance genes (WWTP):
 - Tetracycline (tet)
 - Sulphonamide (sul)
 - Quinolone (qnr)
 - Macrolides (erm, msrA, mefA)
- How?
 - qPCR
 - NGS

NGS analysis of AB resistance genes in WWTP

Relative abundance of antibiotic resistance genes (ARGs) in sludge Huang, K et al 2014 Int J Mol Sci 15: 10083-10100

Viruses

The most commonly described viruses in wastewater are:

- Adenoviruses
- Noroviruses
- Enteroviruses
- Rotaviruses
- Hepatitis viruses
- Astroviruses

Waterborne viruses are stable due to the lack of a lipid envelope, which renders them a resistance to the environmental agents and disinfection processes

Food and water safety and virus

- 600 million, or almost 1 in 10 people in the world, fall ill after consuming contaminated food
 - 420 000 people die
 - 125 000 children under the age of 5 years die
- Diarrhoeal diseases are responsible for more than half of the global burden of foodborne diseases
 - 550 million people fall ill
 - 220 million children
 - 230 000 deaths every year
 - 96 000 children
- Other major contributors to the global burden of foodborne diseases

Norovirus

Hepatitis A

Virus transmission

Virus in food

- Infective doses are extremely low
 - only a few viral infectious particles (less than 100)
- Infected persons shed viral particles in stool and vomit
 - at peak level of 10⁷-10¹⁰ viral copies per gram of faeces
- Illness lasts only a day or two
 - shedding of virus can continue for up to 60 days
- Viruses do not replicate in food under any temperature and/or water activity
 - they require living cells to replicate
- Viruses do not induce alterations of food ingredients
 - food smells, looks and tastes normal
- Viruses can persist for extended periods
 - in conditions which can otherwise inactivate common foodborne pathogenic bacteria.

Virus detection

Conventional detection:

- qPCR towards specific viruses types and genotypes more related to food outbreaks
- Cell culture infectivity assays (when viruses are culturable)

Novel approach:

Viral metagenomics

Viruses identification by next generation

sequencing

Virus in wastewater

182085	460433	190674	152057	154	559	1042	304	29031	282675	87659	155178	18787	60114	18754	22756	Adenoviridae
2972	96	239	387	29850	7	494	57	1211	13	124	47	20338	27	335	219	Reoviridae
746	19	123	19	1676	24	153	8	1553	65	159	6	516	10	53	6	Picornaviridae
412	12	32	33	2040	20	54	26	237	4	6	8	785	13	31	8	Astroviridae
207	20	21	31	929	0	14	10	245	6	29	5	142	3	6	4	Picobirnaviridae
146	1	3	3	263	2	4	0	313	8	8	2	354	2	11	2	Caliciviridae
3	6	18	7	8	18	33	12	1	8	12	5	5	7	22	2	Parvoviridae
1	5	12	7	7	7	27	8	4	10	13	4	5	13	36	6	Circoviridae
11	0	0	2	13	1	14	1	29	3	36	0	2	2	37	3	Poxviridae
15	0	0	1	21	0	9	0	29	10	37	0	4	1	22	2	Herpesviridae
3	0	0	0	25	0	0	0	2	0	0	0	6	0	0	0	Hepeviridae
0	1	2	1	0	0	0	0	1	3	4	2	5	6	8	2	Polyomaviridae
0	2	2	1	0	0	0	0	0	1	1	0	1	1	3	0	Papillomaviridae
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	Anelloviridae
PEG_NUC	PEG_MIN	PEG_QIA	PEG_POW	SMF_NUC	SMF_MIN	SMF_QIA	SMF_POW	MAF_NUC	MAF_MIN	MAF_QIA	MAF_POW	GW_NUC	GW_MIN	GW_QIA	GW_POW	

Mathis Hjort Hjelmsø1 et al. PLOS One, 2107

The proof of concept

- Further treatment
 - Chemical barriers?
 - Microbiological barrier / inactivation / death?
- Greenhouse cultivation of soft fruits
 - Watered with tap water
 - Watered with wastewater
 - Watered with treated wastewater

The end

- Acceptance by stakeholders
- Improvement of reclaimed water treatments
- Knowledge based suggestions for food and water safety legislation

Heal the world

Heal The World
Make It A Better Place
For You And For Me
And The Entire Human Race
There Are People Dying
If You Care Enough
For The Living
Make A Better Place
For You And For Me

Michael Jackson Lyrics

tcrespo@ibet.pt

